

INNOVATIONacademy

Application of Genetics to support Personalised Medicine

Colin Spraggs PhD GlaxoSmithKline

GSTS Conference, Royal Institution, London December 6, 2013

GSK Confidential

Overview

- Human genetics in the drug lifecycle
- Pharmacogenetic examples
 - Efficacy: clopidogrel and CYP2C19
 - Safety: lapatinib and HLA-DRB1*07:01
- Clinical translation of pharmacogenetics
- Challenges and opportunities

Drug Discovery & Development

Developing a new medicine takes an average of 10–15 years Relatively few drugs survive the clinical trial process

Sources: Drug Discovery and Development: Understanding the R&D Process, www.innovation.org; CBO, *Research and Development in the Pharmaceutical Industry*, 2006.

Human genetics opportunities for differentiation in drug discovery and development

Drug Discovery & Development

Genome-Wide Association Study of disease susceptibility

Genotyping landscape

From http://www.genome.gov/gwastudies

Efficacy: Clopidogrel and CYP2C19 variation

- Clopidogrel is a P2Y₁₂ antagonist anti-thrombotic
- Alternative to warfarin for thrombosis prevention in patients with coronary syndromes
- Clopidogrel is a prodrug, activated by *CYP2C19*
- *CYP2C19* has common loss of function variants
 - CYP2C19*2
 - 25% Whites, 30% African Americans, 50% Asians

CYP Loss of Function variants and clopidogrel pharmacokinetics & pharmacodynamics

Mega, JL, et al (2009), New England Journal of Medicine 360: 354-362

Effect of CYP LOF variants on clopidogrel efficacy (risk of death from CV causes)

Mega, JL, et al (2009), New England Journal of Medicine 360: 354-362

- CYP2C19*2 loss of function allele is associated with reduced generation of active metabolites of clopidogrel
- Meta-analyses have both supported or discounted the impact of genotype on adverse CV outcomes during clopidogrel therapy
- Evidence supports a differential genotype effect on protection from major adverse CV outcomes following percutaneous coronary intervention (PCI), but not for other clopidogrel indications

PERSPECTIVES

Clopidogrel: A Case for Indication-Specific Pharmacogenetics

JA Johnson¹, DM Roden², LJ Lesko¹, E Ashley³, TE Klein⁴ and AR Shuldiner⁵

Clin Pharmac Ther (2012): 91; 774-776

HLA Influence on Adverse Drug Reaction Risk Selected Examples

Drug	Adverse Drug Reaction		Genetic Risk Factor		
	Reaction	Prevalence	Risk Allele	MAF	Rel. Risk
Ximelagatran	Hepatotoxicity	0.08	DRB1*07:01	0.14	4
Augmentin	Hepatotoxicity	<0.001	DRB1*15:01	0.15	4
		< 0.001	A*02:01	0.27	3
Lapatinib	Hepatotoxicity	0.03	DRB1*07:01	0.14	14
Lumiracoxib	Hepatotoxicity	0.013	DRB1*15:01	0.15	13
Ticlopidine	Hepatotoxicity	<0.001	A*33:03	0.14	36
Flucloxacillin	Hepatotoxicity	<0.001	B*57:01	0.04	81
Allopurinol	SCAR	<0.001	B*58:01	0.15	678
Abacavir	Hypersensitivity reaction	0.05	B*57:01	0.04	>1000
Carbamazepine	SCAR - Taiwanese	0.003	B*15:02	0.04	>1000
	SCAR - European	<0.001	A*31:01	0.04	26

Frequency of the ADR is typically much lower than the frequency of the HLA allele associated with the ADR

Abacavir (HIV), Allopurinol (hyperuricemia) and Carbamazepine (epilepsy)

HLA-mediated ADRs: Severe skin reactions – SJS, TEN, HSR

Clinical utility defined by:

- Predictive value (PPV & NPV)
- Number needed to test (NNT)

Benefit/Risk considerations:

Life threatening – Yes/No

Treatment options – Yes/No

Drug	HLA allele	Carrier rate	Prevalence diagnosis	Approx NNT to prevent 1 case	PPV/NPV (%)
Abacavir	B*5701	6-8% Cauc	8%	13	55/100
Allopurinol	B*5801	9-11% Han Ch	1-4 in 1000	250	2.7/100
Carbamazepine	B*1502	10-15% Han Ch	<1-6 in 1000	1000	3.1/100

Adapted from Phillips and Mallal, Pharmacogenomics 2010

Lapatinib induced liver toxicity ALT elevations >3x ULN

(H)or Bo

HLA-DRB1*07:01 Placebo Lapatinib 0.25-0.25-— 07:01 Carrier — 07:01 Carrier Ň - x/x - X/X MAF>=0.5% × WAF<0.5% 0 0.20-0.20-0.15-0.15đ . . . G 0.10-0.10-Ν-Ō 0.05-0.05-15 17 18 19 20 22 X 0.00 0.00 0.00-Chromosome Position 0 200 300 1) (203) (190) 0) (879) (815) Time Since Treatment Initiation (days) 300 (208) (185) (158) (756) (710) (651) Time Since Treatment Initiation (days) (247) (857) (952) 8

Prevalence **Approx NNT to PPV/NPV** HLA **Carrier rate** Drug diagnosis prevent 1 case (%) allele DRB1* 20% Cauc Lapatinib 2% 38 8/99.8 (1% Japan) 07:01

Spraggs et al, SABCS 2012

16

400 (2)

- Somatic mutations & gene expression direct cancer treatment – Ph+, EGFR+, HER2+/-, KRASwt, BRAFmt,
- Heritable mutations provide mechanisms to diagnose & treat
 Mendelian diseases (e.g. CFTR G551D Invacaftor)
- Viral/microbial genomes provide taxonomy & provide pathogen resistance profiles prospectively (e.g. HIV, HCV)

Limited translation in others....

gsk

PGx biomarkers with Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines

- Regulatory guidances are proactive & encouraging
- Drug exposure/PK PGx translation not reflected in the number of ADME labels

Drug (s)	Gene(s)	Issue	
Thiopurines	TPMT	Safety	
Codeine	CYP2D6	Safety	
Abacavir	HLA-B*57:01	Safety	
Simvastatin	SLCO1B1	Safety	
Allopurinol	HLA-B*58:01	Safety	
Clopidogrel	CYP2C19	Efficacy/safety	
Warfarin	VKORC1/CYP2C9	Efficacy/safety	
Tricyclic antidepressants	CYP2D6/CYP2C19	Efficacy	
Peg-IFNα	IL28B	Efficacy	

Challenges & Opportunities for PGx clinical translation

PGx testing programs in academic medical centres – understanding the possibilities

- **TPMT** genotyping for 6-mercaptopurine for acute lymphoblastoid leukemia St Jude's Hospital
- CYP2C19 genotyping for clopidigrel treatment of patients underoing percutaneous coronary intervention – Scripps, Vanderbilt, Uni Florida
- **CYP2D6** genotyping to guide treatment for anti-psychotics and antidepressants Mayo Clinic

Conclusions

- Genetics has the potential to influence clinical decision making there are many challenges, but also opportunities
- Determining genetic biomarker performance characteristics is crucial for determining clinical utility
- Embedding PGx testing into clinical practice will require:
 - Solid science supporting robust discovery & validation
 - Education, integration and improved logistics
 - Demonstration of cost-benefit (re-imbursable)
 - Change in clinical paradigm to support personalised medicine

