

INNOVATIONacademy

I III IIII III KING'S HEALTH PARTNERS

Cancer Centre

Patient selection for kinase inhibition in cancer

James Spicer

Reader in Experimental Oncology King's College London

Consultant Medical Oncologist Guy's & St Thomas' NHS Foundation Trust

james.spicer@kcl.ac.uk

Summary

- Cancer as a genetic disease
 - oncogene activation; tumour suppressor gene inactivation
 - many oncogenes are kinases
 - ~ so are readily drugable
- Advances in cancer biology continue to identify novel kinase targets
 - hence new agents
 - often striking activity in genetically selected patients
 - resistance becoming the next problem mechanisms
- Diseases already tractable
 - CML
 - GIST
 - NSCLC
 - melanoma
- Patient selection improves: i) efficacy, ii) cost-effectiveness

Imatinib in CML: the paradigm

	BCR		SH3 SH2 Kinase domain		BCR-ABL
--	-----	--	-----------------------	--	---------

Imatinib in CML

• efficacy of imatinib

Druker et al. NEJM 2001

cKIT and PDGFR α mutations in GIST

Heinrich et al. *Hum Pathol.* 2002;33:484. Corless et al. *Proc Am Assoc Cancer Res.* 2003;44. Abstract R4447.

GIST: clinical response to imatinib according to mutational status

Physiological TK regulation by ligand

Physiological TK regulation by ligand

TK dysregulation in tumours

Molecular drivers in NSCLC

• Majority of adenocarcinomas driven by kinase upregulation

Pao & Hutchinson Nature Medicine 2012

Mutations in EGFR

• More common in:

- E Asian ethnicity¹
- Never or light smokers^{2,3}
- Non-SCC histology³
- Women vs men³
- Associated with favourable response to erlotinib or gefitinib^{4–6}

1. Shigematsu H, et al. J Natl Cancer Inst 2005;97(5):339–46; 2. Pham D, et al. J Clin Oncol 2006;24(11):1700–4; 3. Clark GM. Mol Oncol 2008;1:406–12; 4. Lynch TJ, et al. N Engl J Med 2004;350(21):2129–39; 5. Paez JG, et al. Science 2004;304(5676):1497–1500; 6. Pao W, et al. Proc Natl Acad Sci USA 2004;101(36):13306–11.

Randomised phase 3 trials of first-line EGFR TKIs Probability of PFS^{1,2} 1.0 Gefitinib EGFR M+ (n=132) Carboplatin / paclitaxel EGFR M+ (n=129) 0.8 -0.6 0.4 0.2 0.0 Time from 12 16 20 8 0 24 randomization (months) **Study RR (%)** Median PFS (mo) Median OS (mo) n **IPASS** 261 71 vs 47 10 vs 6 22 vs 22 WJTOG 3405 62 vs 32 36 vs 39 172* 8 vs 5 NEJGSG002 11 vs 5 230 74 vs 31 31 vs 24 **OPTIMAL** 165 83 vs 36 13 vs 5 immature EURTAC 174 58 vs 15 9.7 vs 5.2 19 vs 19 LUX-Lung 3 345 56 vs 23 11 vs 7 28 vs 28 LUX-Lung 6 364 67 vs 23 11 vs 6 immature

Mechanisms of acquired resistance to firstgeneration EGFR inhibitors

• All patients who initially respond to treatment with first-generation EGFR TKIs eventually progress due to acquired resistance:

T790M resistance mutation

- Threonine substituted for methionine at codon 790
- T790M accounts for 50–68% of acquired resistance to EGFR TKIs^{1–3}
- Presence of T790M before EGFR TKI treatment
 - Prevalence varies with detection method (6–<u>38%)^{4–5}</u>

1. Arcila ME, et al. Clin Cancer Res 2011;Jan 19 [Epub ahead of print]. 2. Oxnard GR, et al. Clin Cancer Res 2010;December 6th [Epub ahead of print]; 3. Engelman JA, et al. Clin Cancer Res 2008;14:2895–9; 4. Maheswaran S, et al. N Engl J Med 2008;359:366–77; 5. Sequist L, et al. J Clin Oncol 2008; 26:2442–9.

Some ErbB inhibitors in development

Agent	EGFR IC ₅₀ (nM)	HER2 IC ₅₀ (nM)	HER4 IC ₅₀ (nM)
Dacomitinib	6	45	73
Afatinib	0.5	14	1
Neratinib	92	59	_

Spicer & Rudman. Targeted Oncol 2010;5(4):245–55; Yamamoto N, et al. 7524a ASCO 2011

Newer inhibitors specific for mutated EGFR, especially T790M

AZD9291¹

- Phase 1 dose escalation in any pre-treated EGFR+
- expansions at each dose level with proven T790M
- recruiting only 6 months (60 pts enrolled). Well tolerated so far, rash G1, D G2
- RR = 7/12 T790M

Clovis CO-1686² Phase 1: PR in 4/31 T790M+ – entering Phase 2

> ¹ Ransom ECC 2013 ² Sequist ASCO 2013

ALK translocation

Break-apart FISH detects all potential ALK fusion partners in NSCLC

Negative

Positive

Varella-Garcia M et al. American Society of Clinical Oncology Annual Meeting 2010. Abstract 10533 Chicago, IL, USA.

Courtesy Ross Camidge

Crizotinib: best % change from baseline in target lesions

Camidge et al, ASCO 2011

ALK: mechanisms of resistance

ALK mutations¹

Pre-criz

Post-PD²

ALK Exon 21-25 WT

ALK FISH copy number gain 4.4-fold increase

• New generation ALK inhibitors in development LDK378 RR = 81% in patients resistant to crizotinib²

> ¹Doebele et al., Clin Can Res 2012 & 7504a ASCO 2012 ²Mehra et al ASCO 2012

Crizotinib activity in ROS1+ NSCLC (n=14*)

*Response-evaluable population

[†]Tumour ROS1 FISH-positive, but negative for ROS1 fusion gene expression

[‡]Crizotinib held for >6 wks prior to first scans which showed PD

+, treatment ongoing

Tsang, Shaw et al. J Clin Oncol 30, 2012 (suppl; abstr 7508)

Newer targets to be validated clinically

PI-3-kinase (PI3K) & MAPK pathways:

kinase targets downstream from RTKIs:

Combination of PI3K and MEK inhibition

- Phase 1 combination study
- MK2206 **AKTi**+ AZD6244 **MEKi**
- response in *KRAS* mutant NSCLC

Tolcher et al ASCO 2011

Advanced NSCLC standard of care: soon

Molecular testing in NSCLC

Potential algorithm for patients with adenocarcinoma¹

* 'Other mutations' includes BRAF², MEK1, AKT1, PI3KCA, as well as others

Selected and sequential analysis may be cost effective, but slow and will miss mutations³

Multiplex analysis may be the way forward:

• Illumia; IonTorrent; Sequenom; NanoString; SNaPshot

1. Horn L and Pao W. J Clin Oncol 2009;27:4232–5; 2. Paik P, et al. J Clin Oncol 2011;29:2046; 3. Bunn P and Doebele R. J Clin Oncol 2011;29:1943–5.

Serial assays in liquid and solid tumours

Druker et al. NEJM 2001

Conclusions

- Many cancers fragmenting into many molecularlydefined diagnoses
- A growing proportion of these molecular drivers can be targeted, and most are kinases
- Resistance mechanisms are being defined even for newer therapies
- Extended molecular profiling, and sequential analysis, will soon become key components of diagnosis and treatment selection